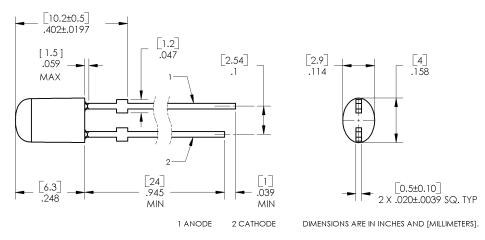
Oval Red LED Lamp (4mm)

.

OVLJRGD8


- High luminous intensity
- Defined spatial radiation
- Multiple viewing angles
- UV-resistant epoxy
- Precision optical performance

The OVLJRGD8 is designed for superior performance in outdoor environments. Its radiation pattern matches green (OVLJGGD8) and blue (OVLJBGD8) devices in identical packages to create LED pixels for full-color video screens.

Applications

- Variable Message Signs
- Indoor/Outdoor Advertising Signage
- Traffic and Highway Signs
- Full-Color Video Signs

Part Number	Material	Emitted Color	Intensity Typ. mcd	Lens Color
OVLJRGD8	AllnGaP	Red	400	Red Diffused

Data is subject to change without prior notice.

Absolute Maximum Ratings

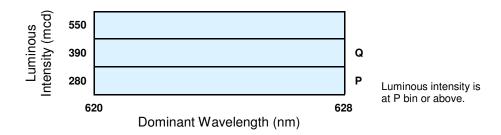
 $T_A = 25^{\circ} C$ unless otherwise noted

Storage Temperature Range	-40 ~ +100 ℃
Operating Temperature Range	-40 ~ +95 ℃
Reverse Voltage	5 V
Continuous Forward Current ¹	50 mA
Peak Forward Current (10% Duty Cycle, 1KHz)	200 mA
Power Dissipation	125 mW
Lead Soldering Temperature (3mm from the base of the epoxy bulb) ²	260 ℃

Notes:

1. For long term performance the drive currents between 10mA and 30mA are recommended. Please contact an Optek sales representative for more information on recommended drive conditions.

2. Solder time less than 3 seconds at temperature extreme.

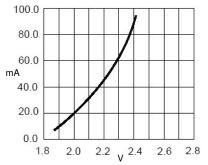

Electrical Characteristics

 $T_A = 25^{\circ} C$ unless otherwise noted

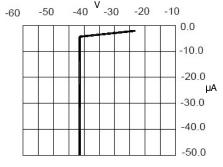
SYMBOL	PARAMETER	MIN	ТҮР	MAX	UNITS	CONDITIONS
l _v	Luminous Intensity	280	400		mcd	$I_F = 20 \text{mA}$
V _F	Forward Voltage		2.0	2.5	V	I _F = 20mA
I _R	Reverse Current			100	μA	$V_R = 5V$
λ_{D}	Dominant Wavelength	620	624	628	nm	$I_F = 20 \text{mA}$
2⊝½H-H	E00/ Dower Apple		100		deg	$I_F = 20 \text{mA}$
2⊖1⁄2V-V	50% Power Angle		50		deg	$I_F = 20 \text{mA}$

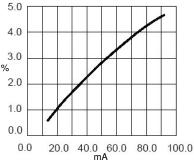
Standard Bins (I_F = 20mA)

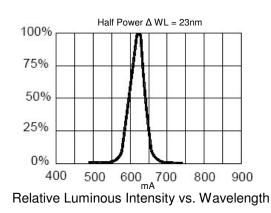
Lamps are sorted to luminous intensity (I_V) and dominant wavelength (λ_D) bins shown. Orders for OVLJRGD8 may be filled with any or all bins contained as below.

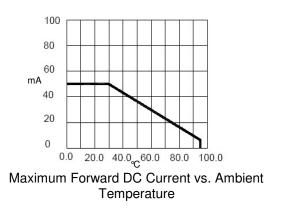


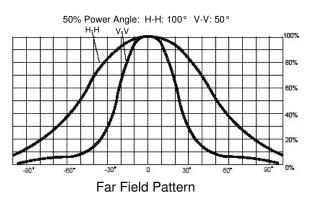
Important Notes:


- 1. All ranks will be included per delivery, rank ratio will be based on the chip distribution.
- 2. To designate luminous intensity ranks, please contact OPTEK.
- 3. Pb content <1000PPM.


Typical Electro-Optical Characteristics Curves


Forward Current vs. Forward Voltage




Reverse Current vs. Reverse Voltage

Relative Luminous Intensity vs. Forward Current

Oval Red LED Lamp (4mm) OVLJRGD8

Issue	Change Description	Approval	Date
1.0	Initial Release	J. Haynie	5/26/05